Spisok30.ru

Список Дел №30
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вода для гидратации цемента

Строй-справка.ру

Сущность процесса гидратации
Сущность процесса гидратации

Под гидратацией понимают реакции клинкерных составляющих с водой (присоединение води), причем образуются твердые новообразования (гидраты), которые заполняют первоначально залитый цементом и водой объем плотным наслоением гелевых частиц, вызывая тем самым упрочнение.
Таким образом, без воды твердение невозможно.

Первоначально жидкий или пластичный цементный клей превращается в результате гидратации в цементный камень. Первая стадия этого процесса называется загустеванием, или схватыванием, дальнейшая—упрочнением, или твердением.

Твердение цемента — очень сложный физико-химический процесс, который здесь будет рассмотрен упрощенно. Гидратацию рассмотрим в двух аспектах: как пространственный процесс (какие объемы занимают новообразования и какую структуру они имеют) и как химический процесс (каков состав новообразования).

Гидратация как пространственный процесс. Ответ на вопрос о том, какие образования возникают при гидратации, дан на рис. 19, где представлены продукты гидратации, возникающие в разное время. Одновременно показана кинетика нарастания прочности.

Можно различить следующие процессы.

Цементные частицы в виде дробленых зерен окружены водой затворе-ния, объем которой относительно велик (50—70 объемных процентов). Этот объем заполняется новообразованиями, чтобы возникла прочная структура (цементный камень). Благодаря химическим реакциям с водой уже через несколько минут возникают как на поверхности зерен, так и в воде иглообразные кристаллы а. Через 6 ч уже образуется так много кристаллов, что между цементными зернами возникают пространственные связи (б — в нижней части рисунка два крупных кристалла образуют двумя зернами цемента).

К этому моменту практик говорит, что цемент «схватывается». Через 8—10 ч весь объем между постепенно уменьшающимися зернами цемента заполнен скелетом иглообразных кристаллов, который вследствие возникновения из С3А называется также «алюминатной структурой». Будучи до сих пор пластичной, масса начинает застывать, и происходит быстрое нарастание прочности. В оставшихся пустотах возникают одновременно, но сначала гораздо менее интенсивно продукты гидратации клинкерных минералов C3S и C2S. Последние образуют гомогенный чрезвычайно тонкопористый ворс из очень малых кристаллов, так называемую силикатную структуру в. Значение этой структуры все более увеличивается. Она является собственно носителем прочности цементного камня и приблизительно через сутки начинает вытеснять алюминатную структуру. В возрасте 28 сут (обычный срок испытания цемента и бетона) обнаруживается только силикатная структура г.

Кроме того, видны и неиспользованные цементные зерна (в — сверху, в середине). К этому времени процесс гидратации еще не закончен, в ряде случаев он может продолжаться годы. Возникновение продуктов гидратации рассматривают как гелеобразование, а продукты гидратации — как гель. Скорость, с которой протекают эти процессы, зависит от: Ф крупности цементных зерен (тонины помола цемента): 9 минерального состава клинкера цемента; – количества воды, которым замешивается цемент; – температуры гидратации;
-введения добавок (разд. 2.4),

Рис. 20. Гидратация цемента в цементный клей (представлена на примере объемных изменений цементного клея, состоящего из 100 г Цемента и 40 г воды — ВЩ = 0,4)

Для полной гидратации цементного зерна необходимо присутствие 0,4-кратного количества воды от его массы. Из нее только 60% (т. е. 0,25 массы цемента) связывается химически. Остальные 40% исходной воды остаются в порах геля (гелевые поры) слабо связанными. Размер гелевых пор около 3-10

7 мм. Они неизбежны и служат причиной тонкопористого строения гелевой массы. При химическом связывании вода, в какой-то мере, претерпевает объемную контракцию, которая составляет приблизительно ‘Д ее первоначального объема. Поэтому плотный обьем геля (без пор) на такую величину меньше суммы объемов исходных компонентов цемента и воды. Этот процесс называют усадкой, а освобождающийся в цементном камне объем — объемом усадки. При наличии воды именно этот объем пор заполняется водой. При полной гидратации цементного клея получаем гель, объем которого примерно на 30% состоит из пор. Схематически объемные изменения представлены на рис. 20.

Читайте так же:
Борьба против тараканов цементом

До сих пор мы исходили из того, что цементный клей состоит из 1 ч. массы цемента и 0,4 ч. массы воды. На практике это не всегда так. Если количество цемента больше, то количество воды будет недостаточном, чтобы полностью гидратировались цементные зерна, и в цементном камне останутся непрореагировавшие зерна цемента.

Рис. 21. Объемные соотношения в цементном камне при различном В/Ц и максимально возможной степени гидратации (диаграмма и схема)
1 — объем гелевых пор; 2 — объем капиллярных пор; 3 — объем усадочных пор; 4 — масса геля; 5— неиспользованный цемент; 6 — вода; 7 — цементное зерно; 8 — капиллярные поры (вода)

При большем количестве воды часть ее не участвует в процессе гидратации и образует в цементном камне так называемые капиллярные поры диаметром около Ю-3 мм, которые на несколько порядков больше гелевых пор. Примерно таких же размеров достигают и пустоты, возникающие в результате уже упомянутой усадки. Таким образом, соотношение масс воды л цемента в значительной мере определяет структурные отношения в цементном камне.-Пользуясь этим соотношением, можно определить важнейшие физические свойства цементного камня. Поэтому соотношение масса воды =водоцементное масса цемента отношение (В/Ц) имеет определяющее значение в технологии бетона.

На рис. 21 представлены объемные соотношения при различных значениях В/Ц и предельно возможной степени гидратации. Можно видеть, что суммарная пористость цементного камня тем больше, чем больше значение В/Ц (другими словами, чем меньше цемента в цементном клее). Эти схемы и диаграмма приведены с целью наглядного представления для различных В/Ц, хотя и не вполне отвечают действительности.

Все изложенное – здесь позволяет вывести некоторые важные закономерности, характерные для цементного камня: – процесс гидратации протекает постепенно; – получающийся в результате цементный камень, хотя и является твердым телом, но имеет тонкопористую структуру; – в цементном камне различают поровое пространство усадки и геля(которые неизбежны) и капиллярное поровое пространство (возникающее в увеличивающемся объеме, если цементный клей содержит более 0,4-кратного по отношению к цементу количества воды, т. е. если он подвержен влиянию водоцементного отношения).

По значению В/Ц цементного клея можно оценить пористость возникающего из него цементного камня и сделать выводы о его физических свойствах.

Гидратация как химический процесс. Твердение, представленное как пространственный процесс, теперь рассмотрим как химический процесс. Из разд. 2 известно, что цемент в основном состоит из четырех клинкерных минералов: C3S, C2S, C3A, C4AF.

Возникающие таким образом продукты гидратации представляют собой уже упомянутый гель. Для простоты обозначают их так же, как и клинкерные минералы, из которых они возникли (например, силикат кальция — гидросиликат кальция). Продукты гидратации отдельных минералов имеют специфические свойства, знание которых необходимо для дальнейшего понимания процесса твердения.

Анализ уравнений реакции позволяет сделать некоторые важные заключения. Во-первых, при гидратации возникают совершенно новые вещества. В процессе взаимодействия клинкерных минералов C3S и СгЗ с водой образуются гидросиликаты кальция и, кроме того, гашеная известь [Са(ОН)2], остающаяся внутри цементного камня. Этому явлению мы обязаны тем, что помещенная в цементный клей сталь не ржавеет, благодаря чему стало возможным существование железобетона. Кроме того, следует помнить и о том, что при гидратации выделяется тепло.

Читайте так же:
Монтаж бетон под кирпич

Это практик обязательно должен знать. И особенно следует помнить об этом при выборе цемента для возведения определенных конструкций и при выборе той или иной технологии изготовления бетонных сооружений. Продукты гидратации клинкерных минералов различаются также по прочности. Из рис. 22 видно, что главными носителями прочности являются силикаты кальция.. Особенно интересно, что клинкерный минерал с быстрым нарастанием прочности (C3S) выделяет большее количество тепла (502 Дж/г), чем клинкерный минерал с более медленным нарастанием прочности (C2S — 206 Дж/г).

Продукты гидратации клинкерных минералов различаются и по химическому составу.

Продукт гидратации называется этт-рингитом и раньше из-за своей палочковидной формы и вредного влияния назывался «цементной бациллой». Для этой реакции характерно, что присоединение 32 молекул воды вызывает сильное приращение объема по сравнению с объемами исходных компонентов: СзА и гипса. Увеличение объема безопасно до тех пор, пока оно происходит в пластичной матрице. В свежезамешенном цементном клее образование эттрингита вызывается с целью регулирования скорости твердения.

Рис. 22. Нарастание прочности клинкерных минералов

Механизм действия можно себе представить следующим образом. Очень быстро возникающие кристаллы эттрингита образуют оболочки вокруг цементных зерен. При этом затрудняется доступ воды и замедляется процесс гидратации. Без добавки гипса получился бы мгновенно схватывающийся цемент — «быст-ряк». Объемное расширение опасно, когда оно происходит в уже затвердевшем цементном камне (бетоне).

При этом наблюдается 4,6-кратное увеличение объема. Подобные реакции в затвердевшем цементном камне приводят к возникновению напряжений, нарушению структуры и ее разрушению (сульфатная коррозия). Поэтому для бетонных объектов, подверженных сульфатному воздействию, следует применять цементы, бедные СзА, чтобы ограничить или исключить образование эттрингита. Итак, при гидратации клинкерных минералов C3S и C2S образуется помимо гидросиликатов кальция гашеная известь Са(ОН)2, .Она предотвращает развитие коррозии стали, помещенной в цементный камень; – в процессе гидратации клинкерных минералов выделяется разное количество тепла; – в результате гидратации клинкерных минералов образуется искусственный камень с различной прочностью; – продукт гидратации С3А неустойчив по отношению к сульфатам. Возникает эттрингит, причем изменение объема может привести к разрушению цементного камня (сульфатная коррозия); – в зависимости от поставленных задач в строительстве применяются цементы с различной долей каждого из клинкерных минералов, причем в качестве основных критериев при выборе служат четыре приведенных выше.

ГЛАВА 1. Портландцемент

При затворении портландцемента водой происходят реакции, обусловливающие твердение цементного теста. В присутствии воды силикаты и алюминаты, перечисленные в табл. 1.1, образуют продукты гидратации, которые постепенно затвердевают и превращаются в цементный камень.

При взаимодействии составляющих цемента с водой идут два процесса. Прежде всего происходит непосредственное присоединение молекул воды, или истинная гидратация. Второй процесс характерен взаимодействием минералов цемента с водой с их разложением — гидролиз.

Обычно применяют термин «гидратация» ко всем типам реакций цемента с водой, т. е. как к истинной гидратации, так и к гидролизу.

Ле Шателье около 80 лет назад впервые установил, что при одинаковых условиях продукты гидратации цемента имеют тот же химический состав, что и продукты гидратации его отдельных составляющих. Позже это было подтверждено Стейнором, а также Боггом и Лерчем, хотя и с оговоркой, что продукты реакции могут воздействовать друг на на друга или даже взаимодействовать друг с другом в системе. Силикаты кальция — основные составляющие цемента, поэтому физические свойства цемента во время гидратации определяются поведением каждого из этих составляющих в отдельности.

Читайте так же:
Где взять краситель для цемента

Продукты гидратации цемента характеризуются низкой растворимостью в воде, о чем свидетельствует высокая водостойкость цементного камня. Гидратированные новообразования цемента прочно связываются с непрореагировавшим цементом, однако механизм этой связи пока не ясен. Возможно, что гидратные новообразования создают оболочку, которая растет изнутри под воздействием воды, проникающей через эту оболочку. Или возможно, что растворенные силикаты проникают через оболочку и осаждаются на ней в виде внешнего слоя. И третья возможность: образование и осаждение коллоидного раствора во всей массе после того, как достигнуто насыщение, дальнейшая гидратация продолжается внутри этой структуры.

Каким бы ни был способ осаждения продуктов гидратации, скорость гидратации непрерывно уменьшается, так что даже после длительного времени остается заметное количество негидратированного цемента. Так, например, через 28 суток после затворения водой зерна цемента прогидратировали только на глубину 4ц,. Пауэре подсчитал, что полная гидратация при нормальных условиях возможна только для цементных зерен размером менее 50|л, но при непрерывном размельчении цемента в воде полная гидратация была получена в течение 5 суток.

Микроскопическое исследование гидратированного цемента не подтверждает прохождения воды в глубь зерен цемента и выборочной гидратации наиболее реакционно способных составляющих (например, C3S), которые могут находиться в центре зерна. Поэтому представляется, что гидратация развивается вследствие постепенного уменьшения размеров цементных зерен. Действительно, было обнаружено, что в возрасте нескольких месяцев негидратированные зерна цемента грубого помола содержат как C3S, так и C2S и, возможно, что мелкие частицы C2S гидратируются раньше, чем завершается гидратация крупных частиц C3S.

Различные составляющие цемента обычно присутствуют во всех его зернах, и исследования показали, что оставшиеся зерна цемента после определенного периода гидратации имеют тот же относительный минералогический состав, что и целое зерно до гидратации. В течение первых 24 ч может все же происходить избирательная гидратация.

Основными гидратами являются гидросиликаты кальция и трех-кальциевый гидроалюминат. Полагают, что C4AF гидратируется с образованием трехкальциевого гидроалюмината и аморфной фазы, возможно CaO-Fe2O3-aq. Возможно также, что некоторое количество Fe2O3 присутствует в твердом растворе гидроалюмината кальция1.

Степень гидратации цемента может быть определена различными способами посредством измерения: количества Са (ОН)2 в тесте; тепловыделения при гидратации; удельного веса теста; количества химически связанной воды; количества негидратированного цемента (с помощью рентгеноструктурного анализа), а также косвенного по прочности цементного камня.

Вода для гидратации цемента

Цементное тесто, приготовленное путем смешивания цемента с водой, вначале (в течение 1—3 ч после затворения) пластично и легко формуется. Потом наступает схватывание, заканчивающееся обычно через 5—10 ч после затворения; в период схватывания цементное тесто загустевает, утрачивая подвижность, но его механическая прочность еще невелика. Переход цементного теста в твердое состояние означает конец схватывания и начало твердения, которое характерно возрастанием прочности. Твердение при благоприятных условиях длится годами — вплоть до полной гидратации цемента.

Читайте так же:
Механизм отверждения гибридного стеклоиономерного цемента

Сразу после затворения цемента водой начинаются химические реакции. Уже в начальной стадии гидратации цемента происходит быстрое взаимодействие алита с водой, сопровождающееся образованием гидросиликата кальция и гидроксида:

2 (3CaO-SiO2) + 6Н2О = 3CaO-2SiO2-3H2O + ЗСа (ОН)2.

После затворения гидроксид кальция образуется из алита, так как белит гидратируется медленнее алита и при его взаимодействии с водой выделяется меньше Са(ОН)2, что видно из уравнения реакции:

2 (2CaO-SiO2) + 4Н2О = 3CaO-2SiO2-3H2O + Сa (ОН)2.

Гидросиликат кальция 3CaO-2SiO2-3H2O образуется при полной гидратации чистого трехкальциевого силиката в равновесии с насыщенным раствором гидроксида кальция. Молярное соотношение CaO/SiO2 в гидросиликатах, образующихся в цементном тесте, может изменяться в зависимости от состава материала, условий твердения и других обстоятельств. Поэтому применяется термин С—S—Н для всех полукристаллических и аморфных гидратов кальциевых силикатов, относимых к гелевой фазе.

Гидросиликаты кальция низкой основности, имеющие состав (0,8—1,5) CaO-SiO2-(1—2,5)Н2О обозначаются (по Тейлору) формулой С—S—Н (I), гидросиликаты более высокой основности (1,5—2) CaOSiO2-nH2O— формулой С—S—Н (II). Образование низкоосновных силикатов кальция повышает прочность цементного камня; при возникновении высокоосновных гидросиликатов его прочность меньше. При определенных условиях, например при автоклавной обработке (в среде насыщенного пара при давлении 0,8—1,3 МПа и температуре 175— 200 °С), образуется тоберморит 5CaO-6SiO2-5H2O, xaрактеризующийся хорошо оформленными кристаллами, которые упрочняют цементный камень.

Основной алюмосодержащей фазой в портландцементе является трехкальциевый алюминат ЗСаО-А12Оз. Он представляет и самую активную фазу среди клинкерных минералов. Немедленно после соприкосновения ЗСаО-А12Оз с водой на поверхности непрореагировавших частиц образуется рыхлый слой метастабильных (неустойчивых) гидратов 4СаО-А12О3-19Н2О и 2СаО-А12О3-8Н2О в виде тонких гексагональных пластинок, образующих по терминологии Р. Кондо и М. Даймона «структуру карточного домика». Рыхлая структура гидроалюминатов ухудшает морозостойкость, а также стойкость против химической коррозии. Это одна из причин ограничения количества трехкальциевого алюмината в специальных портландцементах, применяемых для морозостойких бетонов.

Стабильная форма — шестиводный гидроалюминат ЗСаО-А12О3-6Н2О, кристаллизующийся в кубической форме, образуется в результате быстро протекающей химической реакции:

3CaO- Al2O3 + 6H2O = ЗСаО-А12О3-6Н2О.

Для замедления схватывания при помоле клинкера добавляют небольшое количество природного гипса (3— 5 % массы цемента). Сульфат кальция играет роль химически активной составляющей цемента, реагирующей с трехкальциевым алюминатом при затворении цемента водой и связывающей его в гидросульфоалюминат кальция (минерал эттрингит) в начале гидратации портландцемента.

В насыщенном растворе эттрингит сначала выделяется в коллоидном тонкодисперсном состоянии, осаждаясь на поверхности цементных частиц, образуя тонкую плотную экранирующую оболочку, что замедляет их гидратацию и отодвигает схватывание цемента. При правильной дозировке гипса он является не только регулятором сроков схватывания ПЦ, но и улучшает свойства цементного камня. Это связано с тем, что кристаллизация из пересыщенного раствора понижает концентрацию гидроксида кальция в растворе, и эттрингит через 6-8 ч перекристаллизовывается в виде длинных иглоподобных кристаллов, которые создают начальную волокнистую структуру твердеющего цементного камня. Кристаллы эттрингита и обусловливают раннюю прочность затвердевшего цемента. Эттрингит, содержащий 31—32 молекулы кристаллизационной воды, занимает примерно вдвое больший объем по сравнению с суммой объемов реагирующих веществ (С3А и сульфат кальция). Заполняя поры цементного камня, эттрингит при оптимальной дозировке гипса повышает его механическую прочность. Структура затвердевшего цемента улучшается еще и потому, что предотвращается образование в нем слабых мест в виде рыхлых гидроалюмина-тов кальция.

Четырехкальциевый алюмоферрит при действии воды гидролитически расщепляется с образованием шестиводного трехкальциевого алюмината и гидроферрита кальция по схеме

Читайте так же:
Если работали без перчаток с цементом что будет

Однокальциевый гидроферрит, взаимодействуя с гидроксидом кальция, который ранее образовался при гидролизе C3S, переходит в более высокоосновный гидроферрит кальция . Гидроалюминат связывается добавкой гипса, а гидроферрит входит в состав цементного геля.

Исследование гидратации цемента (калориметрия)

Калориметрия в цементно-бетонной промышленности Калориметрия в цементно-бетонной промышленности Калориметрия в цементно-бетонной промышленности

Калориметрия измеряет тепло, выделяемое при ранней гидратации лежалого цемента. Измерение скорости реакции в калориметре непрерывно (происходит в реальном масштабе времени) и демонстрирует поведение цемента, бетона или раствора, характеристики, которые невозможно получить при традиционных испытаниях, таких как время схватывания или прочность при сжатии.

Время и форма температурных или тепловых кривых, полученных с помощью калориметрии, являются индикаторами относительной производительности цементирующих смесей и потенциальных неблагоприятных взаимодействий между материалами, используемыми в смеси.

    , в которых образцы бетона находятся в хорошо изолированной среде, происходит имитация гидратации молекул бетона , в которых температура вокруг пасты или строительного раствора образца поддерживается постоянной для имитации различных температур гидратации цемента. Контроль температуры дополнительно обеспечивает отличную воспроизводимость.

Одним из важных факторов, который необходимо отслеживать в цементном растворе — является процесс гидратации, то есть реакции цемента с водой, в результате которой жидкий или пластичный цементный клей превращается в цементный камень. Без воды бетонный раствор получить невозможно, так как именно при ее добавлении начинается стадия схватывания цемента. Первая стадия этого процесса называется загустеванием, вторая — упрочнением, или твердением. Эти два этапа считаются основными для приобретения смесью заявленных характеристик (в первую очередь прочности, а также других важных параметров).

На скорость гидрализа и гидратации влияют: степень помола цемента и его минеральный состав, количество воды, которой замешивается цемент, температура, введение добавок. Все эти факторы легко смоделировать с помощью калориметра и добиться идеального рецепта для цементно-бетонной смеси.

Типичные применения калориметрии в цементно-бетонной промышленности:

  • Рецептура примеси
  • Характеристики дополнительных связующих материалов
  • Оценка новых материалов
  • Сравнение смесей с использованием различных источников цемента
  • Сравнение различных марок или типов примесей
  • Сравнение смеси с различными источниками летучей золы или шлака. Поиск совместимости.
  • Испытания влияния времени добавления примеси (заранее смешивая с водой или позднее).
  • Определение максимальной дозы смеси с данным цементом, влияние на производительность. Особенно рекомендуется для бетона высокой производительности.
  • Определение оптимальной дозировки добавок или дополнительных материалов с различными цементами (см. пример)
  • Выявление потенциальных проблем неблагоприятного материала
  • Оптимизация сульфатов и контроль качества на уровне цементного завода
  • Использование кривых калориметрии для определения прочности при сжатии
  • Исследование ошибок на основе статистического анализа и их отслеживания
  • Расчёт энергии активации и прогнозирование термического растрескивания.
  • Использование тепловых показателей для получения установочных выводов

Этот пример показывает чувствительность к изменениям в дозировке примесей. На графике показана изменение тепла реакции гидратации (в мВт/г сухого цемента) с течением времени.

Желтая кривая представляет собой стандартную смесь, включающую нормальную дозу водорастворимой добавки. 30% — ная передозировка примеси (светло-голубого цвета) не вызывает никаких проблем, кроме двухчасовой задержки. Передозировка 50% — ной примеси (красная кривая) показывает как сильную задержку, так и измененную форму основного пика гидратации цемента в бетоне. При 100% передозировке примеси (темно-синяя кривая) наблюдается крутой подъем и высокий пик, что является индикатором неконтролируемой алюминатной реакции связанной напрямую с последующим усилением прочности.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector